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Talk outline

Expenditure data analysis

Introduction to quantile regression

Two applications

Weighted quantile regression for health expenditure data with missing
covariates
Predicting high spending customers with semiparametric quantile
regression

Penalized quantile regression with high-dimensional covariates
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Health expenditure data

A large proportion of health care costs is concentrated in a small
portion of patients.

We note that the VHA budget for 2012 is $54.3 billion dollars. With
the 10% of high-cost patients accounting for 70% ($36 billion) to
80% ($40 billion) of the total costs.

Analysis of health care cost data is often complicated by a high level
of skewness, heteroscedastic variances and the presence of
missing data.
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Health expenditure data (cont’d)

Limitations of the mean regression approach:

Transformation of the response variable is often required when
constructing the mean regression model and retransformation is
needed in order to obtain direct inference on the mean cost.

The conditional mean model focuses primarily on the marginal effects
of the risk factors on the central tendency of the conditional
distribution. Focusing on the marginal effects at the central tendency
may substantially distort the information of interest at the tails.
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Poll question

How much experience do you have with Quantile Regression?

I’m an expert!

I have some experience.

I have heard of it but have not used it.

This is the first time I’ve heard quantile regression.
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Motivations for quantile regression

Regression: to obtain a summary of the relationship between a
response variable y and a set of covariates x.

Least squares regression captures how the mean of y changes with x.

Conditional quantile functions provide a more complete picture of
the relationship between y and x.

Conditional quantiles are often of direct interest.
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Example: birth weight data

Response variable: baby’s birth weight

Covariates: baby’s gender mother’s age, race, weight gain, smoking
status, education level, ...

Lower quantiles of birth weight are of direct interest.

Abreveya (2001) and Koenker and Hallock (2001): covariate effects
on lower quantiles may differ from those on the mean or median
birth weight.
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Quantile regression

Let FY (y |X = x) = P(Y ≤ y |X = x) denote the conditional CDF of Y
given X = x. The τth conditional quantile of Y is defined as

QY (τ |X = x) = inf{y : FY (y |x) ≥ τ}, 0 < τ < 1. (1)

Linear quantile regression

QY (τ |x) = xTβ(τ),

where β(τ) = (β1(τ), · · · , βp(τ))T is the quantile coefficient that
may depend on τ .

Let ε = Y − QY (τ |x), then we may also write

Y = xTβ(τ) + ε, (2)

where ε satisfies P(ε ≤ 0|x) = τ .
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Calculation: an optimization perspective

E (Y ) = arg mina E{(Y − a)2}.
Median QY (0.5) = arg mina E |Y − a|
Conditional quantile as a minimizer (Koenker and Bassett, 1978):

β(τ) = argmin E [ρβ τ (Y − xTβ)|X = x],

where ρτ (u) = u(τ − I (u < 0)) is called the check function.

Computation: linear programming (default: the simplex algorithm)
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Properties of the estimator

Asymptotic normality:

√
n(β̂(τ)− β(τ))→ N(0,Σ)( ∣ ) −

where Σ = τ(1− τ) E [f (0∣ − ( ∣ )
x)xx′

1 ∣
ε ] E (xx′) E [fε(0 x)xx′

1
] .

Statistical inference: kernel estimation of standard error (se=“ker”),
resampling-based estimation of standard error (se=“boot”)
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R example: birth weight data

> library(quantreg)

> dat1<-read.table("birth.txt", header=TRUE, sep=";")

> attach(dat1)

> AGE2<-AGE^2

> summary(rq(WEIGHT~BOY+BIRTHRECORD+ BLACK+SMOKER+COLLEGE+WEIGHTGAIN

+AGE+AGE2,tau=0.5))

tau: [1] 0.5

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 2912.28554 166.83340 17.45625 0.00000

BOYM 89.91828 17.70474 5.07877 0.00000

BIRTHRECORD 18.31326 5.77476 3.17126 0.00153

BLACKTRUE -287.45878 33.03094 -8.70271 0.00000

SMOKERTRUE -161.13871 25.84372 -6.23512 0.00000

COLLEGETRUE 16.01326 20.64735 0.77556 0.43805

WEIGHTGAIN 2.85663 0.44219 6.46023 0.00000

AGE 25.82043 12.02136 2.14788 0.03177

AGE2 -0.41816 0.20712 -2.01888 0.04355
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R example: birth weight data (cont’d)

> summary(rq(WEIGHT~BOY+BIRTHRECORD+ BLACK+SMOKER+COLLEGE+WEIGHTGAIN

+AGE+AGE2,,tau=0.1))

Call: rq(formula = WEIGHT ~ BOY + BIRTHRECORD + BLACK + SMOKER +

COLLEGE +WEIGHTGAIN + AGE + AGE2, tau = 0.1)

tau: [1] 0.1

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 1914.54960 346.03223 5.53286 0.00000

BOYM 87.33791 37.10524 2.35379 0.01862

BIRTHRECORD 2.88285 11.20978 0.25717 0.79706

BLACKTRUE -594.96180 119.84982 -4.96423 0.00000

SMOKERTRUE -150.24584 48.38939 -3.10493 0.00191

COLLEGETRUE 48.23029 44.10984 1.09341 0.27427

WEIGHTGAIN 2.11297 0.99950 2.11403 0.03456

AGE 58.91430 25.00547 2.35606 0.01851

AGE2 -1.11540 0.43271 -2.57772 0.00997
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R example: birth weight data (cont’d)

>u=seq(.05,.95,by=.01)

>coefstd=function(u) summary(rq(WEIGHT~BOY+BIRTHRECORD+ BLACK+SMOKER

+COLLEGE+WEIGHTGAIN+AGE+AGE2,,tau=u))$coefficients[,2]

>coefest=function(u) summary(rq(WEIGHT~BOY+BIRTHRECORD+ BLACK+SMOKER

+COLLEGE+WEIGHTGAIN+AGE+AGE2,,tau=u))$coefficients[,1]

>CS=Vectorize(coefstd)(u)

>CE=Vectorize(coefest)(u)

>k=2

>plot(u,CE[k,],xlab="prob",ylab="coef", main="boy")

>polygon(c(u,rev(u)),c(CE[k,]+1.96*CS[k,],rev(CE[k,]-1.96*CS[k,])),

col = "light blue")

>points(u,CE[k,], col = "dark red")
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R example: birth weight data (cont’d)

0.2 0.6

6
0

1
0
0

1
4
0

1
8
0

boy

prob

c
o
e
f

0.2 0.6

-7
0
0

-5
0
0

-3
0
0

-1
0
0

black

prob
c
o
e
f

0.2 0.6

-2
0
0

-1
8
0

-1
6
0

-1
4
0

smoking

prob

c
o
e
f

0.2 0.6

-2
0

0
2
0

4
0

college

prob

c
o
e
f

0.2 0.6

2
.0

3
.0

4
.0

weight gain

prob

c
o
e
f

0.2 0.6

1
0

3
0

5
0

7
0

age

prob

c
o
e
f

Lan Wang (UMN) Quantile Regression 14 / 45



SAS example: birth weight data (cont’d)

proc quantreg data=birth alpha=0.01 ci=resampling;

model WEIGHT=BOY BIRTHRECORD BLACK SMOKER COLLEGE

WEIGHTGAIN AGE AGE2 / quantile=0.9

CovB CorrB

seed=12345;

test_age_quadratic: AGE2 / wald lr;
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Application I: weighted quantile regression for estimating
health costs data with missing covariates (Sherwood,
Wang and Zhou, 2014)

The data (695 patients) came from a clinical study on the
cost-effectiveness of a computer-assisted prospective drug utilization
review program conducted in the primary care system of Indiana
University Medical GroupPrimary Care.

Response variable (“charge”) is the log-transformed amount ($)
charged for the health care on each of the patients.

Seven covariates: aa (whether the patient is African-American),
female, pharm sat (pharmacist satisfaction score), alone (whether the
patient is living alone), SF36 PF (SF-36 physical function score),
badReaction (whether the patient stops medication because of
adverse effects) and sexuallyActive (whether the patient engages in
sexual activity).
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Weighted quantile regression for estimating health costs
data with missing covariates (cont’d)

About 10% patients have missing values on the covariates vector
(pharm sat, SF36 PF), while all the other covariates are fully
observed for all the patients.

When the data are obtained from hospital records, incomplete records
may lead to missing information. Missing data may also arise because
the patients drop out of the study or are lost to follow up.

The imputation approach often requires the specification of a joint or
conditional likelihood. However, correct specification of the likelihood
function is often challenging in practice, especially for skewed and
heteroscedastic data or when the missing data contain both
continuous and discrete variables.

Lan Wang (UMN) Quantile Regression 17 / 45



Weighted quantile regression for estimating health costs
data with missing covariates (cont’d)

For subject i , i = 1, . . . , n, we observe a response variable Yi ,
Wi = (Wi1, . . . ,Wip)′ is always fully observed, and
Vi = (V ′

i1, . . . ,Viq) may contain some missing components. Let
X = (W ′ ′
i i ,Vi )′, Ri = 1 if Vi is fully observed and 0 otherwise.

Missing at random (MAR):

P(Ri = 1 | Yi ,Xi ) = P(Ri = 1 | Yi ,Wi ),

For an unknown γ and Ti = (Yi ,W
′ ′ |i ) , P(Ri = 1 Yi ,Xi ) = π(Ti , γ).
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Weighted estimating equation

∑n
GW Ri
n (β) = ψτ (Yi − X ′β) = 0,

π(Ti , γ) i

i=1

where Ψτ (t) = τ − I (t < 0) is the gradient function of ρτ (t). To see
that the weighted estimating equation is unbiased, we observe[ ]

Ri
E X − X ′iΨτ (Yi i β(τ))

π(Ti , γ)[ [ Ri ∣′ ]]
= E E XiΨτ (Yi − Xi β(τ))∣Xi ,Yi

π(Ti , γ)[ ]
π(Ti , γ)

= E XiΨτ (Yi − X ′
π(Ti , γ) i β(τ))[ ]

= E XiE [Ψτ (Yi − X ′i β(τ))|Xi ] = 0.
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The estimator can be computed by weighted quantile regression

∑n̂W Ri
βn = argmin ρτ (Y − ′

i X β).
β π(Ti , γ̂) i

i=1

The estimator is asymptotically normal.

Variable selection: The modified BIC for the candidate model ν is
defined as { }∑n Ri dν log n

BIC(ν) = min ρ
π(T , γ̂

τ (Yi − X ′
) iνβν) + . (3)

βν i 2
i=1

where γ̂ is the estimator from the logistic regression model using all
candidate covariates. The BIC procedure is consistent:
P(ν̂ = ν0)→ 1.
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Table: Analysis of health care costs data: estimation for the full model (with
p-values in the parentheses)

Weighted Naive Weighted0.8 Naive0.8 Weighted0.9 Naive0.9

Intercept 8.84 (0) 8.77 (0) 9.4 (0) 9.56 (0) 10.77 (0) 11.1 (0)
aa -0.21 (0.03) -0.19 (0.06) -0.37 (0.03) -0.34 (0.06) -0.48 (0.05) -0.38 (0.1)

female -0.22 (0.1) -0.26 (0.06) -0.33 (0.11) -0.45 (0.03) -0.81 (0.02) -1.05 (0)
pharm sat -0.2 (0.01) -0.18 (0.03) 0 (0.99) 0.02 (0.84) -0.06 (0.65) -0.11 (0.42)

alone 0.1 (0.45) 0.13 (0.32) 0.52 (0.01) 0.47 (0.01) 0.47 (0.08) 0.37 (0.16)
SF36 PF -0.01 (0) -0.01 (0) -0.01 (0) -0.01 (0) -0.01 (0) -0.01 (0)

badReaction 0.39 (0.04) 0.36 (0.06) 0.69 (0.01) 0.64 (0.02) 0.6 (0.05) 0.66 (0.04)
sexuallyActive -0.21 (0.05) -0.17 (0.12) -0.2 (0.32) -0.21 (0.29) -0.23 (0.36) -0.14 (0.57)
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Table: Analysis of health care costs data: results from variable selection using the
modified BIC at τ = 0.5, 0.8 and 0.9

τ 0.5 0.80 0.90

Intercept 8.09 8.99 10.68
aa - - -

female - - -0.91
pharm sat - - -

alone - - -
SF36 PF -0.01 -0.01 -0.01

badReaction - 0.77 -
sexuallyActive - - -
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Application II: Predicting high spending customers using
semiparametric quantile regression (with Maidman, in
progress)

In many applications, it is important to predict if a future response
occurs at the tails (upper tail or lower tail) of the response
distribution.
Credit card expenditure data from (Greene, 2008): identify applicants
who are more likely than not to spend more than 90% of the
population.
We restrict our analysis to applicants between the ages of 18 and 28.
A threshold of $450, corresponding to the approximate 0.9 quantile of
observed expenditure, was used to classify applicants as high- or
low-spending. Response: ỹi ≡ log(yi + 1).
The linear predictors are share, selfemp, dependents, months, owner,
majorcards, and card. The nonlinear predictors are age (age in years
plus twelfths of a year of the applicant) and income (yearly income in
USD 10,000 of the applicant).
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Predicting high spending customers using semiparametric
quantile regression (cont’d)

Histogram of Credit Card Expenditure
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Logistic regression approach: Given a threshold (such as $5,000),
which is tunable according to the goal of the study, the logistic
regression approach first artificially discretizes credit card expenditure
as 0-1 variables. The logistic regression model is applied to the 0-1
response data.

The logistic regression approach has three main drawbacks:

Due to the artificial discretizing, there is a potential loss of information
compared with the quantile regression approach, as all credit card
expenditures above the threshold are treated as the same.
It is not clear whether the artificial 0-1 data, which are obtained by
thresholding expenditure from a long-tailed and heteroscedastic
distribution, would satisfy the modeling assumptions of logistic
regression.
When prediction of expenditure is of primary concern, the logistic
regression model can only predict if the expenditure exceeds a given
threshold or not; but provides little information on the likely magnitude
of credit card expenditure.
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Partially linear additive quantile regression

∑q
QY |X ,Z (τ) = x ′β(τ) + gk(zk),

k=1

where gk(·) is an unknown smooth function, k = 1, . . . , q.

Let π(t) = (b ′
1(t), ..., bkn+l+1(t)) denote a vector of normalized

B-spline basis functions of order l + 1 with kn quasi-uniform internal
knots on [0, 1]. Then gk(·) can be approximated by π(zk)′ξk ,
k = 1, . . . , q.

( [ ])∑n ∑q
argmin ρ Y − X ′ ′

τ i i β + π(zk) ξk .
{β,ξ1,...,ξq} i=1 k=1
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The new prediction method

Motivation: Given a threshold c , for a new applicant with predictor
vector(x∗, logistic regression) classifies the applicant as high-spending

P(Y ∗>c|x∗)if log 1−P(Y ∗ > 0 and low-spending otherwise. Or>c|x∗)
equivalently, the applicant is classified as high-spending if the
estimated probability P(Y ∗ > c |x∗) is above 0.5.

The proposed new approach also classifies the applicant into either
high-spending or not high-spending according to whether the
estimated probability P(Y ∗ > c|x∗) is above or below 0.5. However,
different from the logistic regression approach, we do not need to
impose a parametric distribution assumption or rely on the likelihood
method. Our approach is based on the important observation that
P(Y ∗ > c|x∗) > 0.5 is equivalent to the conditional median
QY ∗|x∗(0.5) > c .
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The new prediction method (cont’d)

From this observation and observed data, we can classify a new
applicant with predictors x∗ and z∗ as high- or not high-spending
using a threshold c as follows:̂ ∗ ∑ˆ q(a) Compute Qy∗|x∗,z∗(.5) = x β + k=1 ĝk(z∗k ).

(b) If Q̂y∗|x∗,z∗(.5) > c , classify the new applicant as high-spending;
otherwise, classify as low-spending.

P(Y ∗ ∈ high spending | Y ∗ > c , x∗, z∗)→ 1, (4)

P(Y ∗ ∈ not high spending | Y ∗ ≤ c , x∗, z∗)→ 1, (5)

as n → ∞.
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Credit card data analysis

The predictive model used for classification is

Q̂ỹ∗|x∗,z∗(.5) = −0.018 + 9.094 · share− 0.090 · selfemp− 0.053 · depende

+ 4.029 · card− 0.000 ·months + 0.039 · owner

+ 0.020 ·majorcards + ĝage(age) + ĝincome(income),

Threshold Model FP FN TP TN ER WE2 WE5

Logistic 0.02 0.18 0.03 0.05 0.10

c = 450 PLALOG 0.02 0.13 0.03 0.04 0.08
21.53 218.47

τ = .9 Quantile 0.01 0.12 0.02 0.03 0.07
PLAQR 0.01 0.10 0.02 0.03 0.06

nts

WE10

0.18
0.14
0.12
0.10
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High-dimensional data analysis

High-dimensional data have become common in diverse fields

Regularization methods
LASSO (Tibshirani, 1996), adaptive LASSO (Zou, 2006), Dantzig
selector (Candes and Tao, 2007)
SCAD (Fan and Li, 2001; Zou and Li, 2008; Fan and Lv, 2011)
MCP (Zhang, 2010)

Current literature mainly focus on mean regression function.
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Quantile approach in high dimension

High dimension: p � n.

Quantile-adaptive sparsity:
A small number of covariates influence the conditional distribution of
the response variable given all candidate covariates; however, the sets
of relevant covariates may be different when we consider different
segments of the conditional distribution.

Weaker conditions for theory:
No need to impose restrictive distributional or moment conditions on
the random errors and allow their distributions to depend on the
covariates.
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Penalized linear quantile regression

∑
Quantile regression (QR): β̂ −

τ = argmin n 1 n
β i=1 ρτ (Yi − xTi β).

Penalized linea
− ∑ r quantile regression (PQR):

Q(β) = n 1 n ∑p
i=1 ρτ (Yi − xTi β) + pλ(|βj|), where pλ(·) is aj=1

penalty function with a tuning parameter λ.

PQR for linear models with L1 penalty was studied by

Li and Zhu (2008), Zou and Yuan (2008) for fixed p
Belloni and Chernozhukov (2011) for high-dimensional pn

PQR for linear models with nonconvex penalties was studied by

Wu and Liu (2009), Kai, Li and Zou (2011) for fixed p
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Non-convex penalized high-dimensional PQR

Sparsity: Let A0 = {j : β∗j = 0} and |A0| = q. Assume that q � n.

∑n ∑p
Q(β) = n−1 ρτ (Yi − xTβ) + pλ(| |i βj ),

i=1 j=1

The penalty function pλ(t) is assumed to be nondecreasing and concave
for t ∈ [0,+∞), with a continuous derivative ṗλ(t) on (0,+∞).

SCAD penalty:

aλ|β| − (β2 + λ2)/2
pλ(|β|) = λ|β|I (0 ≤ |β| < λ) + I (λ ≤ |β| ≤ aλ)

a− 1

(a + 1)λ2
+ I (|β| > aλ), for some a > 2.

2

MCP penalty:( )β2 aλ2
pλ(|β|) = λ |β| − I (0 ≤ |β| < aλ) + I (|β| ≥ aλ), a > 1.

2aλ 2

6
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Concave penalty function

Fan and Li (2001) demonstrated that the SCAD penalty
simultaneously achieves three desirable properties of penalized
variable selection: unbiasedness, sparsity and continuity. The
same properties are shared by the MCP penalty.

Lan Wang (UMN) Quantile Regression 35 / 45



Difference convex program

Difference Convex (DC) program: we consider penalized loss
functions belonging to the class

F = {f (x) : f (x) = g(x)− h(x), g , h are both convex}

⇒ provides us a new formulation of oracle property.

Extension of the KKT condition

Difference Convex (DC) functions⇒ Oracle property under relaxed
conditions.
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Oracle property

Theorem

Assume that conditions (C1)-(C5) hold. Let Bn(λ) be the set of local
minima of the nonconvex penalized quantile objective function with either
the SCAD penalty or the MCP penalty and tuning parameter λ. The

oracle estimator β̂ = (β̂
T

1 , 0
T )T satisfies that

P(β̂ ∈ Bn(λ))→ 1

as n→∞ if λ = o(n−(1−c2)/2), n−1/2q = o(λ) and log(p) = o(nλ2).

It can be shown that if we take λ = n−1/2+δ for some c c2
1 < δ < , then2

these conditions are satisfied. We can also have p = o(exp(nδ)).
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Algorithm

We combine the local linear approximation algorithm (LLA, Zou and Li,
2008) with linear programming.

While minimizing 1∑n ∑p
i=1 ρτ (Yi − xTi β) + |j=1 pλ( βj |), we initializen

by setting β̃
(0)

= 0 for j = 1, 2, · · · , p. For each step t ≥j 1, we
update by solving

{ n }1 ∑ ∑p
T (t−1)

min ρτ (Yi − xi β) + w |βj |j ,
β n

i=1 j=1

(t−1)
where wj = p′λ(|β̃(t−1)| ≥ ′ ·j ) 0 denotes the weight and pλ( )
denotes the derivative of pλ(·).
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Algorithm (cont’d)

With the aid of slack variables ξ+i , ξ
−
i , and ζj , the convex

optimization problem can be equivalently rewritten as

{ n
1 ∑ ∑p }

min (τξ+ + (1−i τ)ξ−
(t−1)

i ) + w
ξ,ζ n j ζj

i=1 j=1

subject to ξ+ − ξ− = Yi − xTβ; i = 1, 2, · · ·i i i , n,

ξ+ ≥ 0, ξ− ≥ 0; i = 1, 2, · · ·i i , n,

ζj ≥ βj , ζj ≥ −βj ; j = 1, 2, · · · , p.

Iterative coordinate descent algorithm:
Peng, B. and Wang, L. (2014) An iterative coordinate-descent
algorithm for high-dimensional nonconvex penalized quantile
regression. To appear in Journal of Computational and Graphical
Statistics.
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A numerical example

We first generate (X̃1, X̃2, · · · , X̃p)T from the multivariate normal
distribution Np(0,Σ) with Σ = (σ ) and σ = 0.5|j−k|jk p×p jk . The next step
is to set X1 = Φ(X̃ ˜

1) and Xj = Xj for j = 2, 3, · · · , p. The scalar response
is generated according to the heteroscedastic location-scale model:

Y = X6 + X12 + X15 + X20 + 0.7X1ε,

where ε ∼ N(0, 1) is independent of the covariates.

Lan Wang (UMN) Quantile Regression 40 / 45



A numerical example (cont’d)

We consider the following criteria.

Size: the average number of non-zero regression coefficients β̂j = 0 for
j = 1, 2, · · · , p;

P1: the proportion of simulation runs including all true important
predictors, namely β̂j = 0 for any j ≥ 1 satisfying βj = 0. For the
LS-based procedures and conditional median regression, this means
the percentage of times including X5, X12, X15 and X20; for
conditional quantile regression at τ = 0.3 and τ = 0.7, X1 should also
be included.

P2: the proportion of simulation runs X1 is selected.∑pAE: the absolute estimation error defined by |̂j=0 βj − βj |.

6

6 6
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A numerical example (cont’d)

Table: Simulation results (n = 300, p = 600)

Method Size P1 P2 AE

LS-Lasso 24.30 (0.61) 100% 7% 1.40 (0.03)
Q-Lasso (τ = 0.5) 25.76 (0.94) 100% 10% 1.05 (0.03)
Q-Lasso (τ = 0.7) 32.74 (1.22) 90% 90% 1.78 (0.05)

LS-ALASSO 4.68 (0.08) 100% 0% 0.37(0.02)
Q-Alasso (τ = 0.5) 4.53 (0.09) 100% 0% 0.18 (0.01)
Q-Alasso (τ = 0.7) 6.19 (0.16) 100% 86% 0.62 (0.01)

LS-SCAD 6.04 (0.25) 100% 0% 0.38 (0.02)
Q-SCAD (τ = 0.5) 6.14 (0.36) 100% 7% 0.19 (0.01)
Q-SCAD (τ = 0.7) 9.97 (0.54) 100% 100% 0.38 (0.03)

LS-MCP 5.56 (0.19) 100% 0% 0.38 (0.02)
Q-MCP (τ = 0.5) 5.33 (0.23) 100% 3% 0.18 (0.01)
Q-MCP (τ = 0.7) 7.56 (0.32) 98% 98% 0.37 (0.03)
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Conclusion remarks

Quantile regression is useful for analyzing skewed,
heteroscedastic expenditure data

Quantile regression is useful for modeling high-dimensional
heterogeneous data
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Questions/Comments

Contact information: Dr. Lan Wang
School of Statistics

University of Minnesota
wangx346@umn.edu
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